minimal cut - определение. Что такое minimal cut
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое minimal cut - определение

THEOREM IN OPTIMIZATION THEORY
Maximum flow minimum cut theorem; Max flow in networks; Maximum flow/minimum cut theorem; Max flow min cut theorem; Minimal cut; MFMC; Max-flow, mincut theorem; Maximum flow, minimum cut theorem; Max flow min cut; Maxflow-mincut; Min cut max flow; Max-flow min-cut; Max-flow-min-cut; Max-Flow Min-Cut theorem
  • Each black node denotes a pixel.
  • A network formulation of the project selection problem with the optimal solution

Max-flow min-cut theorem         
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e.
Minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
In phonology, minimal pairs are pairs of words or phrases in a particular language, spoken or signed, that differ in only one phonological element, such as a phoneme, toneme or chroneme, and have distinct meanings. They are used to demonstrate that two phones represent two separate phonemes in the language.
minimal pair         
TWO WORDS THAT DIFFER IN ONLY ONE ELEMENT OF THEIR PRONUNCIATION
Minimal pairs; Minimal Pair; Contrasting pair
n. (ling.) to produce; represent a minimal pair

Википедия

Max-flow min-cut theorem

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.

This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem.